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1. EXECUTIVE SUMMARY 
Successfully manufacturing an automotive body structure made via the sheet metal stamping 

process depends upon simultaneous consideration of component design, tooling design, stamping 
process control, and material properties.  In many cases, introducing lightweight sheet materials 
(e.g., aluminum alloys, magnesium alloys, advanced high strength steels) holds the potential to 
significantly reduce vehicle weight, but challenges the stamping process by introducing materials 
with inherently less ductility. Successful and repeatable applications require co-developing the 
stamping process controls with the varying material properties, including formability.  During the 
stamping process, as soon as the forming limit of the sheet is exceeded, the material shows 
localized necking which quickly leads to splits.  Controlling process variability to avoid these 
material splits will enable deployment of less formable, lighter, and stronger materials for stamped 
automotive components. 

 
A typical optimization procedure for manufacturing requires an iterative process involving 

parameter setting, execution of computational simulations, and modifying the parameters. The 
entire process demands substantial computational time, making it impractical for real-time 
feedback towards rapid corrective actions required for in-line control for running production 
processes. To overcome this challenge, artificial intelligence (AI) can be leveraged to determine 
optimal manufacturing parameters within a single manufacturing cycle time. This research 
proposes an in-line optimization framework incorporating a trained AI model to predict kidney-
shaped die forming. Preliminary results indicate that the AI framework can accurately predict 
draw-in values based on a given parameter set, a process referred to as forward prediction. 
Furthermore, the AI framework can also predict the optimal parameter set that leads to the desired 
draw-in values, referred to as inverse optimization (or backward prediction).  

    
This research has been performed in collaborations with USCAR (US Council for Automotive 

Research) and AutoForm. The members of USCAR are Ford, GM, and Stellantis. 

2. INTRODUCTION 
Sheet metal stamping is a critical manufacturing technique in the automotive industry, 

particularly for producing body structure components. The quality of the manufactured parts 
highly depends on complex interplay of factors, including sheet material properties, lubrication 
conditions, die geometry, surface wear, and press operations dynamics. Some of the common 
issues in stamping process include inconsistencies in dimensions, forming severity, and surface 
quality of stamped parts. Figure 1 shows some of the issues predicted through computational 
simulation, including potential split, wrinkles, skid marks, edge cracks, and springback.  
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Figure 1 – Common issues in stamping predicted through simulation (software: AutoForm). (a) 

Potential split, (b) wrinkles, (c) skid marks, (d) edge cracks, (e) springback. 

The automotive industry’s push towards vehicle lightweighting necessitates the use of 
lightweight materials such as aluminum alloys and advanced high strength steels and calls for the 
use of precise process control in stamping operations. Therefore, there is a need for advanced 
control algorithms that can manage process variability and optimize stamping parameters in real-
time to prevent material failures and ensure consistent part quality. 
 

Traditional optimization procedures for sheet metal stamping process typically involve 
iterative cycles of parameter setting, computational simulations, and subsequent modifications, 
which is often time-consuming and impractical for providing real-time feedback in a production 
environment. The top flowchart in Figure 2 illustrates this process. Artificial intelligence (AI) and 
machine learning (ML) techniques can offer promising solutions for rapid, in-line process 
optimization, which may be implemented to address the limitations of the traditional procedure. 
 

In this project, we propose an innovative approach to developing an AI-driven stamping 
process optimization. To expedite the development, the research initially focuses on a simplified 
product geometry, referred to as a kidney die panel. Various forming quality issues can be realized 
during the kidney die forming by changing materials or process parameters, making this design a 
representative candidate for the development of core ML algorithms without the additional 
complexities introduced by more intricate automotive geometries. After the development, the AI-
driven optimization framework is applied to a door frame. 
 

The proposed framework incorporates a trained AI model capable of both forward prediction 
and inverse optimization, as illustrated in the middle and bottom flowcharts in Figure 2. Forward 
prediction involves accurately estimating the stamped part quality through draw-in values based 
on given parameter sets. The inverse optimization determines the optimal parameter set to achieve 
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desired draw-in values. This dual-capability system aims to provide rapid, in-line optimization 
within a single manufacturing cycle time, representing a significant advancement in stamping 
process control. 

 
Figure 2: Flowcharts of (a) a conventional method for stamping optimization, (b) AI-assisted 

prediction (forward prediction), and (c) AI-assisted optimization (inverse optimization) 

This research establishes a foundation for AI-driven process control in sheet metal stamping. 
The successful implementation of the system shows the potential to significantly improve part 
quality consistency, reduce material waste, reduce production down time and delays, and it will 
facilitate the broader adoption of lightweight materials in automotive manufacturing. 

3. STAMPING SIMULATION 
The generation of comprehensive training data is crucial for an effective AI-drive stamping 

optimization model. Although an AI-driven stamping optimization model can significantly 
reduce computation time compared to traditional simulation methods, this speed increase comes 
at the cost of extensive initial data preparation. The model requires a large, well-labeled dataset 
for training. To generate this dataset efficiently, we utilized AutoForm [1], a commercial finite 
element analysis (FEA) tool for stamping simulations. The FEA tool allowed us to simulate a 
wide range of stamping scenarios and parameter combinations, providing the diverse data needed 
to train a robust AI model. This simulation-based approach enabled us to create a comprehensive 
synthetic dataset, while still capturing the complex physics of the stamping process. 
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3.1 Geometry and Simulation Setup 
For initial development and validation, a kidney die geometry was selected as the test case as 

shown in Figure 3. This geometry was chosen for its versatility in capturing various deformation 
modes while maintaining relatively simple shape compared to automotive components in 
production. The nominal process parameters were chosen to produce a feasible part with 
acceptable forming quality, providing a baseline for comparison. 

 
Figure 3. Kidney die geometry for stamping optimization (Left) top view, (Right) cross-section 

shape. 

The simulation parameters included both controllable and uncontrollable parameters. 
Controllable parameters are: individual draw bead forces, bead spacer thickness, total binder force, 
and friction coefficient. Figure 4 shows the stamping parameters defined in AutoForm. The 
simulation setup incorporated systematic variation of these parameters within predefined ranges, 
allowing for the coverage of different potential manufacturing scenarios. AutoForm Sigma was 
configured to generate 880 distinct simulation cases, providing sufficient data for AI model 
training. 

 
Figure 4 – Ranges for input parameters for AutoForm’s sigma trials that were used to create the 
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training dataset. 

3.2 Simulation Results 
The AutoForm sigma trials feature was used to generate a dataset using randomly chosen 

material properties and process parameters as dictated by the respective ranges. Subsequently, the 
simulation was run, and quality metrics were recorded for geometrically relevant locations of the 
stamped component. A total of 880 processing scenarios were generated and simulated as sigma 
trials to form the basis of the dataset for the kidney die geometry. This dataset was used to train a 
neural network surrogate model. Appendix 1 – Simulation quality metrics and locations – shows 
the quality metrics and locations where data were generated via the simulation. Table 1 enumerates 
the localized quality metrics that were simulated and recorded. 

 
Table 1 – Description of key performance indicators that were simulated. 

Feature name Description 
Draw-In  Material inflow at a specific location during stamping 

 Eight locations around the blank edge were monitored for material 
inflow 

Max Failure Advanced 
(MFA) Criterion 

 Value that is correlated with the potential for material splitting 

 Multiple critical zones were established to monitor potential 
splitting 

 Measurements compared major strains against the material's 
forming limit curve 

Potential Wrinkling  Indicator of amount and severity of wrinkling 

 Areas prone to compression and wrinkling were identified based 
on engineering experience 

 Metrics were collected to quantify the severity of potential 
wrinkling 

Thinning  Material thinning as a percent change from original blank thickness 
Springback  Material displacement in the normal direction after stamping 

 
Each of the quality predictors are real values. Based on the design requirements for the 

component, the real values can also be explicitly mapped into classes that represent a flaw or not 
for the given flaw type and location of interest. 
 

3.3 Data Preparation for AI Training 
After the data set was generated, several pre-processing steps were performed before training 

the neural network. Each of the features are scaled between 0 and 1 using min-max scaling [2]. 
Also, as discussed previously, each of the target features are real values that can be explicitly 
mapped to a class that represents a flaw or not. This mapping and the corresponding classifications 
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are necessary when leveraging the surrogate model for optimization. Several distinct functions 
may be employed to perform this class membership function mapping as shown in Figure 5.  
Initially, the simplest class membership function, option 1, a simple threshold, was used.  

 

 
Figure 5 – Several possible class membership functions to transform real values from simulation 
to a flaw classification. 

 
This mapping may be done at two distinct moments in the workflow. First, the mapping may 

be done a priori where the dataset is augmented with class membership for each output feature 
respectively. In this form, the model learns the regression and classification simultaneously and 
independently. Initially, for more advanced optimization objectives, these class membership 
features were precalculated and added to the dataset before training the neural network. This 
approach will be further outlined in Section 5, specifically Section 5.2 Optimizing to Remove 
Splitting Directly. 

 

4. ARTIFICIAL INTELLIGENCE FRAMEWORK 
For this work, a neural network is trained to serve as a surrogate model. The model is trained 

to predict performance metrics at locations of interest across the geometry given a set of material 
properties and processing parameters. The trained network may then be used to perform parameter 
optimization to reduce the occurrence of flaws given a suboptimal combination of material 
properties and processing parameters. The Python library Keras [3] was used for creating and 
training the neural network and for creating custom network layers for optimization. 

 

4.1 Numerical Modeling (Framework) 
The target application of in-line process optimization and the inherently tabular nature of the 
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data led to the choice of a Multi-Layer Perceptron (MLP) neural network for the surrogate 
model. The default MLP network consists of an input layer, three hidden layers with 100 neurons 
each, and the output layer as shown in Figure 6. 

. 

 
Figure 6 – Default model architecture with three hidden layers with 100 hidden neurons each. 

 

4.2  Hyperparameter Settings 
 The model hyperparameters used while developing the framework were largely unchanged. 
The values are shown in Table 2. Future work will include hyperparameter optimization. 
 

Table 2 – Model hyperparameters 

Hyperparameter Value 

Train/Test Split 80%/20% 

Data Normalization Min-Max Scaling 

Loss MSE 

Optimizer ADAM 

Epochs 250 

Learning Rate 0.001 

Epsilon 1.e-5 

Hidden layer activation ‘ReLU’ 

Output layer activation ‘sigmoid’ 

 

4.3  Training and Convergency (Loss) with Epoch 
Initially, draw-in was used to evaluate the surrogate model’s performance. The reported error 
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is the Mean Absolute Percent Error (MAPE). Analysis of the results showed differing levels of 
accuracy depending on whether a physical split had occurred or not. Table 3 below shows the 
average MAPE for the test data, and Appendix 2 – Surrogate model training results – shows 
comparisons of predicted and simulated draw-in for several representative test cases. 
 

Table 3 – Surrogate model performance for predicting draw-in. 

Description MAPE 
Cases with splitting 11.1% 

Cases with no splitting 4.7% 
Full test set 6.4% 

 
In addition to the material draw-in, the surrogate model was also simultaneously trained to 

predict the other quality metrics, such as MFA criterion and potential wrinkling, at their respective 
locations. Training the model to predict all of the targets simultaneously helps the model generalize 
and not overfit the training samples. Additionally, the model can be trained to perform a 
classification task to predict if a given quality metric at a given location represents a flaw or not. 
These predictions may be used for more complex optimization objectives. 

5. PERFORMANCE OF THE AI FRAMEWORK 
Once the surrogate model is trained, it is ready to be used for parameter optimization. Neural 

networks have several interesting properties that will facilitate optimization. First, neural networks 
are widely acknowledged to be universal function approximators. Once trained, they represent 
complex non-linear function. Additionally, they also represent differentiable functions; this is why 
they are trainable using gradient-based methods. 

So, once a model is trained, the same mechanics that were used to train the network may also 
be used for parameter optimization. However, the weights of the network that were learned during 
initial training are frozen and remain unchanged during optimization. The process is outlined in 
the flow chart in Figure 7. 

 

 
Figure 7 – Algorithm for process parameter optimization. 
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5.1  Nominal Draw-In as Optimization Objective 
We used this approach to optimize the processing parameters from the test cases. Appendix 3 

– Optimization for draw-in” shows the evolution of the processing parameters and targets as well 
as simulations of three representative cases from the test set. After optimization the MAPE for 
draw-in from the test cases compared to the nominal draw-in was 1.8 percent. 

 
The draw-in values of the optimized parameter sets closely approximated the nominal draw-

in. However, further analysis showed that potential splitting, indicated by an MFA criterion value 
greater than one, still occurred for some optimized parameter sets. Generally, initial parameter sets 
that resulted in significant splitting initially were likely to have unacceptable MFA criterion values 
even after optimization. Figure 8 shows a representative case where the optimized parameters 
remove even potential splitting; Figure 9 shows a representative case where potential splitting 
persists even after optimizing to match nominal draw-in, though maximum strains were 
significantly reduced. 

 

 
Figure 8 – a representative case where no physical splitting occurs with the original processing 

parameters and optimized parameters remove even potential splitting. 

 

 
Figure 9 – A representative case where physical splitting does occur with the original processing 

parameters, and potential splitting persists even after optimizing to match nominal draw-in. 

So, while draw-in is a reasonable proxy for part quality, using it as the sole target for stamping 
process optimization may not yield acceptable results. As such, we also tried other more complex 
optimization objectives. 
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5.2 Optimizing to Remove Splitting Directly 
Our next goal was to account for splitting directly during optimization. This was accomplished 

by augmenting the dataset with class membership, or flaw indicator, features. Initially, we used a 
threshold of 0.9 for the MFA criterion. Figure 10 shows the mapping of MFA to flaw classification 
for location ‘Z5’ for the training data set. Specifically, a value of ‘0’ correlates to MFA values 
lower than 0.9; and a value of ‘1’ correlates to MFA values higher than 0.9. 
 

 
Figure 10 – Flaw indicator feature mapping for MFA at location five. 

 
Once trained to predict these additional features, they may be used during parameter 

optimization. During optimization the target for these features if ‘0’ representing no potential 
splitting at any location. This contrasts with an optimization objective where specific MFA values 
would have to be chosen arbitrarily for each location. 
 

Using this method, two optimization objective functions were tested that would account for 
splitting directly on the processing parameter sets suggested by OEM formability engineers. The 
first was simultaneously attempt to match nominal draw-in while removing splitting. The second 
optimization objective was perhaps more intuitive: have two rounds of optimizations and attempt 
to match nominal draw-in the first and then remove any remaining splits in the second. Simulations 
of optimized parameters for four representative cases for both optimization objectives are shown 
in Figure 11 and Figure 12, showing persistent potential of splits in both cases after optimizations, 
regardless of the objective functions used. 

 

  
Figure 11 – Optimization objective to simultaneously match nominal draw-in and remove 

splitting for two new processing parameter test sets from left) GM and right) Ford. 
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Figure 12 – Optimization objective to serially match nominal draw-in then remove splitting for 

the test sets from left) GM and right) Ford. 

5.3 Removing Process Parameter Constraints 
Given the unsuccessful attempts at removing potential splitting, the OEM formability 

engineers attempted to manually tune the processing parameters to remove splitting, and were able 
to find processing parameters that yielded successful solutions, shown in Figure 13 and Figure 14. 
However, those solutions included processing parameters outside of the original ranges specified 
for data set generation. During optimization processing parameters had been constrained to stay 
within the original data ranges to ensure that the model would not be extrapolating. 
 

 
Figure 13 – Manually optimized solution from GM. 
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Figure 14 – Manually optimized solution from Ford. 

 
To determine if the model would also be able to find a viable solution, the constraints on the 

parameter ranges were dropped and the second optimization objective was run again. This time 
the model was also able to find a set of parameters that yielded an acceptable solution. The 
simulations for the two cases with the unconstrained optimization are shown in Figure 15 and 
Figure 16. 

 

 
Figure 15 – Optimization objective to serially match nominal draw-in then remove splitting with 

no constraints on processing parameter bounds for the test set from GM. 
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Figure 16 – Optimization objective to serially match nominal draw-in then remove splitting with 

no constraints on processing parameter bounds for the test set from Ford. 

6. APPLICATION TO DOOR PANEL (GEOMETRY IN PRODUCTION) 
Upon the success of the trials on the kidney die geometry, the next step was to determine if the 

framework would be applicable on a geometry currently in production. The framework was 
applied to a door panel geometry to assess the generalizability of the method to other geometries. 
The door panel geometry was provided by GM. The geometry has fourteen controllable parameters 
– twelve secondary draw bead forces, global friction coefficient, and the binder force– that serve 
as inputs, together with material properties, to simulation and the surrogate model. 
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Figure 17 – Door panel geometry and secondary draw beads. 

 
Figure 17 shows the door panel geometry, and one should note that its complexity is 

significantly greater than the kidney die geometry. The generated dataset consisted of 254 samples. 
Draw-in was evaluated at nineteen locations, and max failure was calculated at eighteen locations. 
Optimization was performed in two rounds: round one aimed to match nominal draw-in, and round 
two’s objective was to remove any splitting that remains. The simulation results of initial and final 
parameter sets are shown in Appendix 3. 

 
 

7. USER-INTERFACE APP  
A GUI program, called stAmpIng, was created to facilitate training a surrogate model and 

leveraging it for optimization. The app offers many configuration options for users to enable them 
to test and evaluate the framework for different geometries and for different optimization 
configurations. The packaged program offers configurable inputs and targets for model training 
and the ability to save and load trained models. Additionally, it allows users to customize 
optimization rounds and targets. Figure 18 shows a screenshot of the stAmpIng program. 
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Figure 18 – Screenshot of the program’s project specification file and user interface. 

8. CONCLUSIONS 
In this research, we have successfully developed an innovative AI-driven optimization 

framework for sheet metal stamping processes and demonstrated its effective performance for 
automotive applications. The integration of AI with stamping simulation shows a viable path for 
real-time process optimization. By leveraging AutoForm’s finite element analysis to generate 
training data, we established an accurate AI-based prediction model and a robust AI-based 
optimization model. The total of 880 simulation cases for the kidney die geometry and the total of 
254 simulation cases for the door panel provided sufficient data to train the AI framework capable 
of predicting multiple quality metrics simultaneously and optimizing the controllable parameters. 

 
The AI-based prediction model showed strong predictive performance, particularly for cases 

without splitting, achieving an error of only 4.7% (mean absolute percentage error) for draw-in 
distances. We have also demonstrated that the model can predict multiple quality metrics 
simultaneously including draw-in, potential splitting, and wrinkling. 

 
The AI-based optimization model was further proven effective in multiple scenarios. In 

particular, when the model is allowed to suggest optimal stamping parameters without constraints, 
the stamping parameters suggested by the model led to the most optimal stamping qualities. The 
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two-step serial optimization approach - first matching nominal draw-in values and then 
considering potential splitting – produced highly optimal stamping parameters that led to quality 
stamped parts for both the kidney die and the more complex door panel geometry. The successful 
scaling from a simplified test case (i.e., kidney die) to a production component demonstrates the 
high potential of our AI framework for real-world manufacturing applications. 

 
 We also developed “stAmpIng”, a user-friendly interface for the AI software combined with 

flexible configuration options and the ability to save and load training data for various geometries. 
This software provides easy accessibility to manufacturing engineers who may not necessarily 
have expertise in AI or programming. 
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Appendix 1 – Simulation quality metrics and locations 
 

Max Failure Adv. – Target is 1.0 (or 0.9 with a 10% safety margin) 

 
Figure 19 – Locations where max failure advanced criterion, an indicator of possible splits, was 
evaluated. 

 

Potential Wrinkles – Target is 0.02 (0.03 if 0.02 is not achievable) 

 
Figure 20 – Locations where potential wrinkling was evaluated. 
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Product Performance (Required Thinning) – Target is -0.02 (need at least 2% thinning) 

 
Figure 21 – Locations where material thinning was simulated. 

 

Draw-in – Target is Nominal 

 

Figure 22 – Locations where draw-in was calculated and the nominal draw-in value for each 
location. 
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Springback (Free) was run after T30. Tables were generated at the locations below. Result 
variable is Material Displacement in the Normal direction. Target is 0mm (since the sheet before 
springback represents Nominal shape) 

 
Figure 23 – Locations where material displacement in the normal direction (spring back) was 
evaluated. 
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Appendix 2 – Surrogate model training results 
 

Cases with no splits 

 

 

 

 
 

12.98 mm 

11.11 mm 

24.22 mm 

12.89 mm 
26.62 mm 

9.48 mm 

14.95 
mm 

9.70 mm 

Error: 1.9% 

Sim #1 

4.50 mm 
5.91 mm 

23.30 mm 

14.23 mm 

26.08 mm 

7.58 mm 

7.97 mm 

3.84 mm 

Sim #6 

Error : 6.8% 
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5.11 mm 6.32 mm 

23.47 mm 

14.35 mm 

7.57 mm 26.22 mm 

8.55 mm 

4.04 mm 

Sim #7 

Error : 3.4% 
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Cases with splits 
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Appendix 3 – Optimization for draw-in 
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Appendix 4 – Optimization of door panel geometry 
 

# Before After 

I 

 
 

II 
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